New Product: Single-Chip Front-End Module Covers 24–30 GHz

Block diagram of the TMC252 with the text "Announcing a front-end RFIC for FWA. 5G, and Satcom. TMC252"

mmTron has developed its first single-chip front-end IC for mmWave communications. Covering 24 to 30 GHz, the TMC252 integrates a power amplifier (PA), low noise amplifier (LNA), and transmit-receive (T/R) switch on a single GaN IC that is available as a die or packaged in a 5 mm x 5 mm air-cavity QFN.

The TMC252 is well-suited for fixed wireless access, 5G infrastructure, point-to-point radio, and satellite communications (Satcom). Its broadband performance covers several FR2, radio, and Satcom bands.

Tx Performance

In transmit mode, at 27 GHz the TMC252 provides 38 dBm saturated output power, 37 dBm at 1 dB compression, and 42 dBm OIP3. At saturated output, the power-added efficiency (PAE) is 22%. Small-signal gain is 22 dB. Biased at 23 V on the drain and –3.8 V on the gate, the quiescent current is 590 mA.

TMC252 measured on-wafer output power with 18 dBm drive at 24, 27, and 30 GHz.
TMC252 Tx path measured on-wafer output power with 18 dBm drive at 24, 27, and 30 GHz.

Rx Performance

In receive mode, at 27 GHz the TMC252 provides 19 dB gain with 5 dB noise figure. The output power at 1 dB compression is 25 dBm and OIP3 is 29 dBm. The recommended drain bias is also 23 V, and the current drain is 60 mA with –4.5 V on the gate.

TMC252 receive path measured on-wafer noise figure from 23 to 31 GHz.
TMC252 receive path measured on-wafer noise figure from 23 to 31 GHz.

T/R Switching

The single pole, double throw GaN switch routes the transmit signal from the PA to a common port, typically connected to an antenna, or the receive signal from the common port to the LNA. It is switched with 0 or 23 V; no negative voltage is required to control the switch.

The TMC252 is available as a die (designated TMC252D) which measures 3 mm x 3 mm x 0.1 mm. It is also available packaged in a 5 mm x 5 mm air-cavity QFN.

The datasheet for the TMC252 may be downloaded here.